
Stream Processing

Lecture 1

2022/2023

Table of Contents

• Introduction

• Big data frameworks: map-reduce

• Big data stream processing intro

The need for stream processing

• Applications dealing with continuously flowing
data, from geographically distributed sources,
at unpredictable rates, that need to obtain
timely responses to complex queries
– Wireless sensor networks
– Financial tickers
– Fraud detection
– Traffic management
– Logistics systems, etc...

Why is this different?

• The concepts of timeliness and flow processing are crucial for
justifying the need for a new class of systems

• Traditional DBMSs:
– Require data to be (persistently) stored and indexed before it can be

processed
– Mostly designed to process data only when explicitly asked by the users,

i.e., asynchronously with respect to its arrival
• Example: Detecting fire in a building by using temperature and

smoke sensors
– A fire alert has to be notified as soon as the relevant data becomes

available
– There is no need to store sensor readings if they are not relevant to fire

• The relevant data can be discarded as soon as the fire is detected, if it does not
have any extrinsic value to the fire detection application.

Dynamic Data Example

• Using a sensor network measuring temperature and
smoke, for fire alerts
– We want data to be processed continuously for detecting

the fire prone conditions, and not only when users query
– We don’t want to store all the measurements, especially

those that have nothing to do with fire conditions.
– Even those that alert for fire, are only needed until the fire

alert is emitted; after that we may discard them

• Implementing this in a system designed for static
data (e.g. a DBMS) is not adequate

Tools for processing streams

• Complex event processing

• Stream processing systems

• Time-series databases

Complex event processing

• CEP typically:
– Goal: more oriented towards detecting patterns of

events

– Use high-level declarative language like SQL, or a
graphical user interface

– CEP engine performs the required matching,
emitting event when the pattern is detected

– Roots: publish-subscribe messaging systems;
continuous queries in database systems

Stream processing systems

• Stream processing typically:
– Goal: more oriented towards producing

aggregations and statistical metrics

– Moving from low-level interfaces to declarative
languages

– Roots: modern stream processing systems derive
from Big data parallel processing frameworks

Time-series databases

• Time-series databases typically:
– Goal: monitor the operation of machines,

processes, etc.

– Moving to declarative languages

• Roots: special purpose monitoring software,
continuous query databases

Distributed Stream Processing Systems

• Why distributed stream processing systems?
– Scalability

• Impossible to process all events in a single machine

– Provide fault-tolerance
• Need to tolerate server failures

– Latency
• Need to provide results fast, in a timely manner

– Data is distributed
• E.g.: processing sensor data

Roadmap for the first part of the
course

• Intro to big data frameworks

• Stream processing systems
– Non-structured programming

– Structured programming and SQL

– Continuous streaming

• Stream processing ecosystem and IoT

• Storage for streamable data

Table of Contents

• Introduction

• Big data frameworks: map-reduce

• Big data stream processing intro

12

Google’s MapReduce: summary

• "a programming model and an associated
implementation for processing large datasets"

• "runs on a large cluster of commodity machines … a
typical … computation processes many terabytes of
data on thousands of machines"

• "a new abstraction that allows us to expresses simple
computations we were trying to perform but hides the
messy details of parallelization, fault-tolerance,
data-distribution and load-balancing in a library"

13

Programming model

14

• Sequence of map and reduce stages

• Map: processes input (files); emit tuples

• Reduce: process tuples grouped by key; Emit tuples

Programming model... working

15

• Example: count the number of times each

word appears in a document (or documents)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1");

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

Programming model… working

16

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1");

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

m
ap

p
er

re
d

u
ce

r

fct

(fct,1)

fct
di
fct
unl
di

re
d

u
ce

r

(di,1)
(di,1)

fct
di
fct
unl
di

Programming model… working

17

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1");

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

m
ap

p
er

(fct,1)
(di,1)
(fct,1)
(unl,1)
(di,1)

(di,1)
(di,1)
(fct,1)
(fct,1)
(unl,1)

(di,2)

re
d

u
ce

r

(altran,1)
(altran,1)

fct
di
fct
unl
di

Programming model… working

18

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1");

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

m
ap

p
er

(fct,1)
(di,1)
(fct,1)
(unl,1)
(di,1)

(di,1)
(di,1)
(fct,1)
(fct,1)
(unl,1)

(di,2)
(fct,2)
(unl,1)

Programming model is not everything

• Programming model is simple, but…
• …how to run computations efficiently?

19

Map-reduce execution model

20

Map-reduce execution model

21

1.input files
divided into splits

2. mappers
process splits in
parallel

3. intermediate results
saved in multiple files by
key range

4. reducers sort intermediate
files before processing values for
each key

Limitations of map-reduce

• Scalable, but slow
– Data stored on disk after each step

• Low-level programming
– Simple programming model with no abstractions

for helping writing programs

• Batch processing model not adequate for
some applications
– Need stream processing

Table of Contents

• Introduction

• Big data frameworks: map-reduce

• Big data stream processing intro

23

Big Data / Batch processing

• All data known at the time of processing

• Goal: Execute computation over data and produce result

• Problem: what if new data arrives continuously, and new
results should be computed continuously?

24

Source
data

Batch Processing
System
(e.g. Hadoop,
Spark)

Results
data

Examples of Big Streaming Data

25

Producing information on
traffic, based on information
collected from users’
mobile phones

Big Streaming Data

• Can we use (batch) big data processing tools?
– Save data as it arrives

– Execute computation periodically - e.g. every hour

– Problems?

– Long delay for results, computation not incremental, …

26

Source
data

Results
data

Batch Processing
System
(e.g. Hadoop,
Spark)

Big Streaming Data: requirements

• Need to process data as it arrives (or at most
with a very small delay)

• Need to be able to process data from multiple
sources

• Need to tolerate faults

27

Two processing models (1)

• Continuous
– Each tuple processed as it arrives

– Processing system may keep state for executing window
computations and incremental computations

28

Stream Processing
System
(e.g. Storm, Flink)

Results

Two processing models (2)

• Mini-batches
– Tuples received for each X ms grouped in a mini-batch

– Process mini-batches

– Processing system may keep state for executing window computations
and incremental computations

29

Results

Stream Processing
System
(e.g. Spark Streaming)

Stream processing: some issues

• Semantics
– Reasoning about time

– Joining multiple streams

• Performance
– Latency

– Fault tolerance

– Sampling

Reasoning about time

• Stream processing often need to deal with
time, but notion is tricky.
– e.g.: compute X over the last five minutes. What

does it mean?

Reasoning about time: event time

• Use the time of the event. Problems?

• Delay to start processing
– Delays of event propagation

– Have to deal with stragglers
• Ignore straggler events

• Issue correction of results

– Have to deal with failures

Reasoning about time: process time

• Use the time the event reached the stream
processing system. Problems?

• Combine events from different time periods
– Delays of event propagation

– Fault tolerance

Joining multiple streams

• Often needs to join events from multiple streams
– e.g., in a website, associate search query with click on

search.

• Stream-stream join
– Need to be able to join an event with an event in the

past

• Stream-table join
– Store data in a table; join stream with data in a table

Stream processing: some issues

• Semantics
– Reasoning about time

– Joining multiple streams

• Performance
– Latency

– Fault tolerance

– Determinism

– Sampling

Latency in stream processing

• Some applications impose real time or bounded
latency constraints on processing

• Results need to be produced at a rate compatible
with the ingress rate

• Effects of fault-tolerance should be transient (and
perceived as jitter, rather than accumulate).

• Partitioning can speed up computations, via
parallelism, but can lead to some stragglers.
– Not easy to anticipate. May be too late upon detection
– Sensitive to input / improper partitioning

36

Fault tolerance in stream processing

• Batch processing
– In worst case, can tolerate faults by re-computing

everything

• Stream processing
– Not usually feasible to replay the stream(s) from

the very beginning

– Implies some form of periodic checkpointing (or
replication)

37

Determinism in stream processing

• Redundant processing is useful in some
scenarios…
– Can provide fault tolerance;

– Mitigate the impact of stragglers in latency.

• Processing the same stream twice should yield
the same stream of results.

• Algorithm should not depend on factors
external to the data

38

Sampling in stream processing

• Execute processing over a fraction of the data.
Why is this acceptable?

• For high ingress data rates, sampling may be
employed to meet desired processing latency

• Sampling is not straightforward and impacts
on the accuracy and interpretation of the
processing results

39

Systems for stream processing

• Continuous processing
– Apache Storm

• Open sourced by Twitter
• API: proprietary, SQL-like

– Apache Flink
• API: proprietary, table-based, SQL-like

• Mini-batch processing
– Spark streaming

• API: proprietary, table-based, SQL-like

40

Bibliography

• Martin Kleppmann. Designing data-intensive applications. Chapter 11.

